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Young’s modulus, yield stress and Poisson’s ratio are studied for different size and tem-
perature. The temperature dependence of simulated Young’s modulus is quite similar to
experimental results. Transverse sound velocity is estimated from the simulated elastic con-
stants at each temperature. The dislocation speed reaches up to 75% of the transverse sound
velocity. The dislocation speed decreases with increasing temperature linearly. The tempera-
ture dependence of macroscopic deformation behavior and the possibility of the existence of
supersonic dislocations are discussed. The transverse sound velocity and rigidity G is calcu-
lated from Young’s modulus, Poisson’s ratio and density ρ which changes with temperature.
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1. Introduction

AuCu II is a one-dimensional long-period ordered structure based on AuCu I structure, which
has anti-phases with shifts of 0, 1/2, 1/2, and its unit cell corresponds to 10 unit cells of AuCu I.
Au-Cu alloys exhibit excellent mechanical strength, chemical stability, and process ability. Thus,
they are employed as dental materials, jewelry and industrial materials. At high temperatures,
these types of alloys exist in the form of solid solutions over the entire range of compositions.
It is well known, however, that they form ordered alloys below a certain transition temperature
which depends on the alloy composition. The order-disorder transition of a stoichiometric AuCu
alloy (hereafter referred to as AuCu alloy) has been extensively studied. The ordered phase is
stable at low temperatures and has a face-centered tetragonal structure (hereafter referred to as
AuCu I).
Heat treatment can be used to harden gold-copper alloys by a slightly different process.

Because the gold-copper system forms a complete solid solution at all compositions, the atoms
can be interchanged on the lattice sites. However, as the atoms are cooled, the copper and gold
atoms tend to separate on alternating planes of the lattice in an ordered arrangement. This
ordering makes dislocation motion more difficult, raising the yield stress. The Zener relaxation
in yellow gold alloys (of sufficiently high copper content) exhibits the same characteristics. These
materials harden because they form an ordered phase of tetragonal symmetry like AuCu.
Molecular dynamics simulations have been applied successfully in many fields including chem-

ical physics, materials science and in the modeling process of biomolecules. Comprehensive re-
views of the subject can be found in literature (Haile, 2001; Leach, 2001; Schlick, 2002; Griebel
et al., 2007). The mechanical properties of Ni nanowires are highly dependent on size, shape
as well as atomic vacancies in the nanowire were shown in (Aish, 2019). Structural transforma-
tion and mechanical properties of Ti nanowire were studied in (Aish and Starostenkov, 2016).
Characterization of strain-induced structural transformations in CdSe nanowires using molec-
ular dynamics simulation was given in (Aish et al., 2015). Mechanical properties of nanowires
using nano indentation were studied by Antohe et al. (2001).
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The yield strength decreases with increasing temperature. Low yield strength at high tem-
perature is because of the fact that thermal fluctuations which overcome the energy barrier for
dislocation nucleation. Detailed MD results concerning the temperature dependence of the core
structure have been obtained.
MD simulation has been used to investigate the effect of temperature and cell size of AuCu II

superlatticeon explaining the nature of deformation and fracture. The engineering stress and
strain dependent on temperature and size of the simulated cell obtained by the MD of tensile
specimens. The nature of deformation, Young modulus, yield stress, yield strain and Poisson’s
ratio were studied. MD simulation of deformation under a uniaxial tensile strain condition
for AuCu II alloys was performed in order to clarify the temperature and size dependence.
Simulations are performed for the temperature range from 100K to 500K using Cleri-Rosata
potentials. Structural changes taking place in nanowires of AuCu II alloys during mono-axial
tension investigated in the course of high-rate, tensile uniaxial loading along 〈001〉 and 〈100〉
at different temperatures and cell size were studied. The presence of periodic thermal planar
defects in the long-period nanostructure (combined thermal anti-phase boundaries) significantly
affects the onset of plastic deformation.
The object of investigation are nanowires of AuCu II superlattice alloy. We study the effect

of temperature and size of the simulated cell on mechanical properties of simulated nanowires.

2. The MD method

MD simulations were used to simulate movement of each atom of interacting atoms based on
Newtonian mechanics. Given instantaneous position and velocity vectors of the atoms, dynamical
history of the composition was generated by numerically integrating equations of motion. The
force and energy of the system were calculated, atoms in the composition were given in the
Cartesian coordinate components for different condition of thermodynamics and kinetics. The
computer simulation process allowed for the equilibrium system until minimal interatomic energy
and force through development of suitable interatomic potentials.
When modeling deformation in nanowires studied, there was a periodic repetitive progressive

shift of atoms which make up absolutely rigid grips along the axis of stretching nanowires in
opposite directions from each other. The structure of absolutely rigid grips remained unchanged
throughout the experiment. Non-deformable absolutely rigid grips were shifted by 0.001 nm every
0.1 ps. The total speed of the atoms was 20m/s and corresponded to a strain rate of 2.29 ·109 to
3.39 · 109 s−1 depending on length of the investigated nanowire. This order of velocities is found
in works on modeling tensile/compression strains. At the beginning of a computer experiment,
the temperature was set through the velocities of atoms, the modules of which were calculated
by the formula

|vi| =

√

2kbT0
mi

(2.1)

where kb is the Boltzmann constant, T0 – set temperature, mi – atomic mass of atom i.
During deformation of the nanowire, thermostatting was performed with the reaction time of

the thermostat tr = 0.1 ps according to the Berendsen algorithm. The structural rearrangement
of atoms inside the calculated block of the crystal was realized by the molecular dynamics
method by solving a system of ordinary differential equations of Newton’s motion that describes
the motion of particles.
Molecular dynamics simulation requires a definition of a potential function or a description

of terms by which the particles in the simulation will interact. In chemistry and biology this is
usually referred to as a force field, and in material physics as an interatomic potential. Potentials
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may be defined at many levels of physical accuracy; those most commonly used in chemistry
are based on molecular mechanics and embody classical mechanics treatment of particle-particle
interactions that can reproduce structural and conformational changes but usually cannot re-
produce chemical reactions.
Ab initio, quantum mechanical and chemical methods may be used to calculate potential

energy of a system on the fly, as needed for conformations in a trajectory. This calculation is
usually made in the close neighborhood of the reaction coordinate. Although various approx-
imations may be used, these are based on theoretical considerations, not on empirical fitting.
Ab initio calculations produce a vast amount of information that is not available from empir-
ical methods, such as density of electronic states or other electronic properties. A significant
advantage of using ab initio methods is the ability to study reactions that involve breaking or
formation of covalent bonds, which correspond to multiple electronic states.
To make the nanowires in the state with the lowest energy we applied the dynamic relaxation

method of molecular dynamics. The interaction of atoms in the alloy was set by many-tight-
-binding potential Clery-Rosato (Cleri and Rosato, 1993)

E =
∑

i

(

−

√

∑

i¬j

ξ2αβ exp
(

−2qαβ
rij

rαβ0 − 1

)

+
∑

i6=j

Aαβ exp
(

−pαβ
rij

rαβ0 − 1

)

)

(2.2)

where ξ, A are energy parameters corresponding to the properties (depth) of the potential well,
q, p – parameter determining stiffness of interatomic bonds, r0 – average equilibrium distance
which takes into account the interaction between the atoms. Dynamic relaxation was carried
out at an initial temperature of 0K for a 10 ps. The nanowires can be heated to temperatures
of 100K (but not more than 120K), due to release of energy. The strain was set along each of
the axes alternately, i.e. it is uniaxial. The interval defining deformation ranged within −12%
to 12% depending on the considered axis. The calculation unit was kept at a predetermined
deformation temperature of 0.6Tm for 0.05 ns, then cooled every 0.001 ps.
This work was performed using our new MD program “Structural Transformation of Metal-

lic FCC, BCC and HCP Nanowires and Their Alloys Using Cleri-Rosato potential” (Aish,
2019). The interatomic interactions were calculated using the tight-binding potentials (Cleri
and Rosato, 1993). We used a simpler, more efficient computer program for simulating a system
involving several thousands of atoms in the time interval up to several nanoseconds.
Since the nature of deformation, Young’s modulus, yield stress, yield strain and Poisson’s

ratio of AuCu II superlattice nanowires are of main interest in this work (Tables 1 and 2), it
seems to be reasonable to adopt small Lx, Ly and Lz in simulations. To save the computing time,
the dimensions of the MD models used in the following simulations are set to be Lx = Ly = Lz,
and Lz changes from 5 to 30 atomic plane. The nature of deformation, Young’s modulus, yield
stress, yield strain and Poisson’s ratio of AuCu II superlattice were studied.

Table 1. Typical molecular dynamic simulation results of AuCu II superlattice for different cell
size at room temperature, Young’s modulus E [GPa], tensile strength, tensile strain, Poisson’s
ratio and rigidity G

Lz E Yield stress Yield strain Poisson’s ratio G
[nm] [GPa] [GPa] [%] [%] [GPa]

1.8 81.2 11.91 0.143 0.11 45.617

3.6 86.1 11.8 0.131 0.178 52.372

5.4 94 12.35 0.1305 0.14 54.651

7.2 93 10.73 0.116 0.102 51.781

9.4 93.1 10.35 0.109 0.102 51.837
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Table 2. Typical molecular dynamic simulation results of AuCu II superlattice for two cell size
(10 and 30 atomic plane with cubic form) at different temperature, Young’s modulus E [GPa],
tensile strength, tensile strain and Poisson’s ratio

T [K]
E [GPa] Yield stress [GPa] Yield strain [%] Poisson’s ratio [%]
30 10 30 10 30 10 30 10

100 99 97 12.7 15.1 0.153 0.123 0.162 0.111

200 96.1 78 12.6 11.7 0.1405 0.1312 0.20 0.125

300 94 82 12.35 11.95 0.14305 0.131 0.11 0.14

400 89 65 11.73 10.7 0.128 0.133 0.118 0.14

500 83.1 74 10.85 11.5 0.119 0.13 0.072 0.1398

3. The nature of mechanical properties

3.1. The nature of mechanical properties at room temperature

In this part, MD simulations are performed for the AuCu II superlattice alloy nanowire
subject to uniaxial tensile strain loading. Deformations of the nanowire are in a fast stage of the
atomic damage process. The mechanical properties at different volumes of simulated lattice with
MD simulations, the uniaxial tension of AuCu II superlattice nanowires are studied for different
nanowire volumes at 300K.

Figure 1 shows the change of Young’s modulus with the cell size. The trend of size dependence
of Young’s modulus of the simulated results is quite similar to other findings (Aish, 2019).

Fig. 1. Relation between Young’s modulus with the cell size at 300K

In Fig. 2, the change of yield stress at different size cell is shown. The trend of size dependence
of yield stress of the simulated results is divided into three regions; in the first region from 1nm
to 3.6 nm the yielding stress seems to be constant. In the second region from 3.6 nm to 5.5 nm,
the yielding stress increases. Finally, in the third region from 5.5 up to 10 nm, the yielding stress
decreases with increasing size of the cell (Aish, 2019).

Figure 3 shows the change of yield strain with the cell size. The trend of size dependence
of yield strain of the simulated results is shown; the yield strain drastically decreases with the
increasing cell size.
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Fig. 2. Relation between the yield stress and the cell size at 300K

Fig. 3. Relation between yielding stress with size cell at 300K

In Fig. 4, the change of Poisson’s ratio with different size cell is shown. The trend of size
dependence of Poisson’s ratio of the simulated results is divided into two regions. In the first
region from 1nm to 3.5 nm, Poisson’s ratio increases with increasing cell size. In the second
region from 3.6 up to 10 nm, Poisson’s ratio decreases with increasing size of the cell.

3.2. The nature of mechanical properties for the cubic form at different temperatures

The mechanical properties by MD simulations under uniaxial tension of AuCu II superlat-
tice nanowires were studied at various temperatures from 0K̇ to 500K for two different sizes
(10× 10× 10 and 30× 30 × 30 atomic plane).

The results demonstrated that Young’s modulus, tensile strength, tensile strain, Poisson’s
ratio depended on both temperature and size of the simulated cell.
Figure 5 shows the change of Young’s modulus with temperature for two cell sizes. The trend

of temperature dependence of Young’s modulus is quite similar for different cell sizes. It decreases
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Fig. 4. Relation between Poisson’s ratios with the cell size at 300K

Fig. 5. Relation between Young’s modulus with temperature for two different cell sizes

with increasing temperature in the numerical experiment. In Fig. 5, the change of Young’s
modulus for different temperatures is shown. As can be seen from the figure, simulated Young’s
modulus decreases with increasing temperature. Bigger Young’s modulus at low temperature
indicates that the nanowire maintains its elastic deformation for a long time. Whereas, smaller
Young’s modulus at high temperature illustrates that the plastic deformation begins quickly.

In Fig. 6, the change of yield stress at different temperatures is shown. As can be seen from
the figure, the simulated stress decreases with increasing temperature. The trend of temperature
dependence of the yield stress is quite similar to experimental results for AuCu in the temper-
ature range from 100K to 500K. Analysis of the results shows that the value of yield strength
for 30 × 30 × 30 nanowires are 1.02 at 100K and 1.36 at 400K times the corresponding values
for 10 × 10 × 10 nanowires, which is consistent with the ratio of bulk moduli of elasticity for
these materials. The values of yield strength coincide with the data obtained in the framework
of other models. With an increase in the temperature, a decrease in the value of yield strength
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of nanowires is observed. Figure 6 shows a decrease in strength with increasing temperature at
the strain rate of 2 · 108 s−1 for all temperatures.

Fig. 6. Relation between yield stress and temperature for different sizes

Figure 7 shows the change of yield strain with temperature. The trend of temperature de-
pendence of yield strain is shown; the yield strain drastically changes at different temperatures
and cell sizes. The first yield strain ε decreases when temperature increases. The bigger strain at
low temperature indicates that the nanowire maintains its elastic deformation for a long time.
Whereas, smaller strain at high temperature illustrates that the plastic deformation begins
quickly.

Fig. 7. Relation between yield strain and temperature experiment for different sizes

In Fig. 8, the change of Poisson’s ratio at different temperatures is shown for two cell sizes.
We see that as temperature and cell size increase, Poisson’s ratio decreases. The reason behind
the decrease in Poisson’s ratio with an increase in temperature might be due to the dependence of
dislocation motion on temperature. During deformation of the nanowire, the dynamic hardening
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of the material as a result of nucleation of dislocations and recovery due to climb of dislocations
might be occurring simultaneously.

Fig. 8. Relation between Poisson’s ratio with temperature for different sizes

3.3. Calculation of sound velocity from the simulated elastic constant

The transverse sound velocity vTs is estimated from the rigidity G and density ρ by,
vTs =

√

G/ρ. The rigidity is calculated from Young’s modulus and Poisson’s ratio ν by
G = E/2(1 − ν). The velocity of sound in anisotropic materials is directionally dependent.
Three wave velocities may exist in any given direction: two transverse waves (primary oscilla-
tion perpendicular to the wave propagation direction) and one longitudinal wave (polarization in
the same direction as the propagation). You can select the type of wave (transverse or longitudi-
nal) and whether to view the velocity surface or the inverse velocity (slowness). The contribution
can either be from elastic effects alone or from elastic and piezoelectric effects. You can choose
several different materials. The velocity v of sound in materials depends on the elastic constants c
and density ρ. Velocity calculations can often be very simple, but because of anisotropy of many
materials the elastic constant c is actually a 6×6 matrix of values. Determination of the velocity
of the wave requires the Christoffel equation. This description also considers the contribution of
the piezoelectric coupling.

4. Conclusion

Metallic AuCu II superlattice nanowires show great potential for applications in miniaturiza-
tion of electronic devices due to extraordinary mechanical strength and electrical properties.
Experimental investigations of these properties are difficult because of their size and compli-
cations in performing experiments at such length scales. Computational techniques based on
classical molecular dynamics simulations (using 3DMD program) provide an effective mean to
understand the mechanical deformation behavior of such nanowires with considerable accuracy
and predictability. In the present investigation, we have discussed the sound velocity in AuCu II
superlattice nanowires at various temperatures and sizes due to tensile loading using classical
molecular dynamics simulations (3DMD program). The effect of size and temperature on the
yield strength, Young’s modulus and Poisson’s ratio of the nanowire has been studied in detail.
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